Aircraft Diesel Engines

Why haven’t they been really successful?

What will the future bring?

May 10, 2012
AEHS Meeting
Pensacola FL
by Bill Brogdon
Some of My History

- Rambling Wreck from Georgia Tech
- 1968 B. Mechanical Engineering

- 1968-76 International Harvester
- Truck engine design and analysis
Teledyne Continental Motors

• 1976-98 & 2007-10
• Design Engineer
 Director Engineering
 Chief Engineer
• Engines
 – TSIOL300 Boeing Condor
 – IOL-200 Voyager
 – TSIOL 550 RAM 414
 – Grob Strato 2C HALE
 – NASA GAP diesel
 – O-200D Skycatcher
• 1998-06
• Design Manager
Chief Engr (Industrial & Other)
• TARDEC- Commercially based FCS engine
• Cummins Mercruiser Diesel marinized ISB
• Design and analysis direction for all engine types and clients
 – Diesel
 – Gasoline
 – Stirling
 – Engine sizes from .5 to 10,000 hp
About This Presentation

• Engine design guy, not a historian, help me where you see I need it
• Airship diesel engines are left out of this presentation, there was never a successful one!
• Also true for helicopters… but some of them are in here… *consistency is for sissies.*
• Some experimental auto conversions are included and some are not.
Aircraft Diesels -- Why?

- Fuel economy
 - Cost
 - Range
- Fuel availability
- Fire safety and no CO
- Operational
 - Single lever fueling control
 - Inlet (carb) icing due to fuel evaporation not an issue
- Potentially longer TBO
- The emphasis on each changes over time
- Diesels are now in a rapid phase of development due to trucks and cars; applied to aircraft diesels this will lead to great improvements in “ilities”
Factors in Engine Success

- **Success** is serial production of 500 or more engines for aircraft (my definition)
- Dedicated leaders with drive tempered with patience (temporal and financial)
- Financial (development funding)
- Right place, right time
- Willing aircraft OEM partners
- Regulations and Politics
- Technical
 - Appropriate power
 - Weight
 - Reliability & durability
 - Fit in airplane
 - Good operational features
What Has Been Successful

• Junkers Jumo 205 & 207

• Thielert Centurion 1.7 and 2.0

• Charomskiy ACh-30 & M40

• Potentially, the Austro 2.0
Junkers Jumo 204-207

- Six cylinder opposed piston 600-1000 bhp
- Turbocharged 207 1000 hp operational to 46,000’
- Do18 with 2-205’s flew 5214 miles England to Brazil
Junkers Jumo 204-207

• Dr. Hugo Junkers started development of OPs in 1913, first flight 1929
• Series production of the 204 began in 1931
• Series production of the 205 began in 1935
• Dr. Junkers was a brilliant engineer, a good leader, and very persistent, did not get along with Nazi’s
• Junkers company was financially strong for much of the development period
• WW2 and government funding provided the right place and time
• Although successful, the Junker OPs still did not compare well technically with German SI engines
• Dr. Junkers had the advantage of also running an airplane company, but his engines were used by others too.
Charomskiy ACh-30b & M40

- 61L, V-12, 1500 bhp, liquid cooled, turbocharged, 2800 lb.
- Soviet design for long range bombers
- Development started in early ‘30s
- Initial engines unreliable, troublesome at high altitudes and in cold conditions
- 1526 engines built from 1940-45
Thielert Centurion

- 1.7 and 2.0 L conversions of Mercedes car engines
- Geared, common rail, liquid cooled, 4 cylinder in-line, 135 to 155 bhp
- Centurion diesel engines installed in:
 - Diamond DA40 & 42
 - General Atomics Gray Eagle (nee Predator A)
 - Finch Ecoflyer (Robin DR400)
 - STCs for Cessna 172, 206 & Piper PA28
- 2600 engines produced since 2001
Thielert Centurion

- Frank Thielert started in auto racing components in 1989
- Started Thielert Aircraft Engines in 1999
- Diamond selected the Centurion 1.7 in 2001 for the DA 40 and DA42
- Thielert and Diamond owner Christian Dries are both talented and intense, good for getting started

- Both the Centurion and Austro (next slide) and some other planned engines are automotive based
 - Lifespan of auto engine designs are usually short ~5 years
 - Aircraft engines hang around for 50 years, this makes conformance to automotive type design a real issue
Austro AE300

- 2L, 165 bhp, four cylinder, geared, common rail, 407 lb, conversion of a Mercedes car engine
- To replace Centurion engines in Diamond Airplanes
- Diamond Aircraft formed Austro Engine company
- Diamond has been experimenting with a number of engine options over the years
- Well funded company with dynamic management by Christien Dries
Almost Successful

- Guiberson A-1020
 - 9 cylinder radial, two valve, 340 bhp
 - 1326 produced as a 245 bhp tank engine by Buda
 - Flew in a Stinson Reliant but overtaken by WW2 commitments to tank production
 - Evidently a smooth running, reliable engine

AEHS Wilkinson Ch. 3
What Wasn’t Successful

- Packard DR 980
- Napier Culverin
- BMW-Lanova 114
- KHD 710
- Bristol Phoenix
- Jalbert Loire
- Coatalen
- Clerget
- ZOD 260B
- Godfrey

- Lawrance
- Fiat ANA
- Napier Nomad
- VM (VOKBM)
- McCulloch
- TCM (GPD)
- NASA Compound Cycle
- Garrett 2 stroke

- TCM NASA GAP
- Diesel Air/Gemini
- Merlyn
- Zoche
- CRM
- EcoMotors (OPOC)
- Achates
- Rybinsk DN 200
- SCOMA-Energie
- Engine Corp. of America
Why No Success?

• A failure in either leadership, financing or technical issues

• Packard DR-980 225 hp, 9 cyl. radial, 4 str. 1928
 – Good financing, right place & time, but not enough power
 – Single valve cylinders without exhaust manifold let exhaust into cabin, nauseating but not deadly
 – Said to vibrate badly, unknown if balance, firing impulse, or improper mounting
 – Suffered reliability issues because of a short three year development program, the rush to production is the killer of many engines
Why No Success?

- Napier Nomad 3570 hp, 12 cyl., 2 str, loop scav turbocompound, 1950
 - Overtaken by gas turbines, low fuel costs
 - Very complex, Napier almost never made normal engines
Why No Success?

- TCM General Products Div 400 hp, 6 cyl. radial, 2 str., loop scav., geared, turbocompound, catalytic combustor, VAT, ceramic piston, slipper rods, adiabatic, 1980
 - Right time
 - NASA funded, not well supported by company
 - Too much weird, especially adiabatic

NASA Contractor Report 3260
Why No Success?

• TCM NASA GAP 200 hp, 4 cyl., opposed, 2 stroke, Uniflow, slipper rods, 1996
 – Right time, but power too low for diesel market
 – NASA funded, not well supported by company
 – Too much weird, especially balance system
 – Brogdon engine, no good excuse
Success TBD

Engines in Hardware
- SMA 305
- Delta Hawk
- Raiklin
- CMD GF56
- Continental TD 300
- Steyr
- Wilksch
- EPS 180° V8
- Raptor Turbo Diesel

Paper Engines
- TEOS Powertrain Engineering
- CoAxe
- FairDiesel
SMA 305

- 230 bhp, 5L, four cylinder, opposed, air and oil cooled
- Weight competitive with SI
- Renault Sport (Formula 1) designed engine mid 90’s
- Less than 100 installed, all STC’s
- Tried by many OEM airframers
- Issues (reported to be resolved)
 - Propeller stress (4 cylinder)
 - Vibration (4 cylinder)
 - Charge air and oil cooler sizes
 - Minimum manifold pressure of 60” Hg
- First Reno Diesel Air Racer 2011
- Probable lack of consistent, forceful management
SMA 305
Contiguous TD 300

- 230 bhp, 5L, four cylinder, four stroke, opposed, air and oil cooled
- Weight competitive with SI
- Design license acquired in 2010
- Currently under development in Mobile AL
- Completed redesign to improve critical altitude, cold temperature starting ability and air cooling characteristics in late 2011.
- Entered FAA certification in Q1 2012
- Will be in rate production in Q1 2013
WAM

- 130 bhp I3 and 190 bhp I4, inverted, two stroke, uniflow, IDI
- Mark Wilksch started in 1994, flew in 1997
- A pretty good small engine, smooth running, evidently fairly reliable
- 20 are flying, I flew in an RV9 in spring 2010
Raikhlin

- RED AO3 V12 Aircraft Engine
- 6L, 500 bhp, V12, geared, four stroke
- Almost certainly an auto engine conversion, perhaps Audi? B/S don’t match
Engineered Propulsion Systems

- Small start up company in New Richmond WI
- Good technology (probably best of current candidates), limited funds but good business plan
- 350 bhp, 8 cylinder, geared, 180° V, 4.4L, four stroke
- Running demonstrator (Nov 2011), BMW heads and other components (production will use EPS parts)
- Excellent fuel consumption 214 gm/kW/hr (.35lb/hp/hr)
- Weight competitive
Significant Issues for the Future

• Jet-A specification has no cetane requirement
 – Synthetic Jet-A may have cetane of 20 or less
 • High minimum manifold pressure requirements
 • Starting issue
 – Will the Military force cetane requirements for “one fuel forward”?
 – Current Jet-A cetane as low as 40, this is ok
• Possible required unleaded avgas will benefit diesel
• Uncertain markets
 – Will the BRIC and other emerging nations embrace General Aviation?
 – Will a phase out of 100LL wreck GA in the US?
• Will UAV’s start using significant numbers of diesels or will they go to gas turbines?
What Will Drive A Successful Future Diesel

• Emerging Markets
 – Big countries with small road infrastructure
 • China, India, Brazil, Russia
 • Africa
 • SE Asia
 – Phase out or non-availability of 100LL
 • Europe
 • US in 10-15 years

• Appropriate power for airframes
 – Singles for individuals? 250-400 bhp
 – Twins for commercial? 400-1000 bhp

• Strong partnership of engine and airplane manufacturers

• Financial and management strength
Brogdon’s Engine for the Future

• The presumption is that the diesel market will be for GA and UAV
 – ~400 bhp for personal GA (e.g. Cirrus)
 – ~1000 bhp for business GA (e.g. King Air)
 – ~30-400+ for UAV

• Four stroke, not a two stroke
 – Surpassed weight specific outputs of two strokes
 – This is the technology being developed by truck engines
 – Much better durability at high thermal loading
 – Easier turbocharger match
 – No need for starting blower

• Liquid cooled because of high power density
• Direct drive flat 6 for 400 bhp
• Geared flat 12 for 1000 bhp
Brogdon’s Favored Engine Construction

- Flat six, 7 main crank, through bolted
- Flat twelve, 7 main crank, fork & blade or side by side rods
- Cylinder barrels screwed into heads to eliminate head gasket
- Steel main bearing saddle
- Overhead four valve, two high camshafts
- Unit pump or unit injector fuel injection

Images permission from Concepts NREC
Brogdon’s Favored Engine Construction

Images permission from Concepts NREC
What Probably Won’t Work

• Two strokes (except for low power density)
 – Lubrication of the cylinder above the ports is an unresolvable issue for high power density
 – This includes:
 • Opposed Pistons (especially because of exhaust ports)
 – Achates
 – OPOC
 – DAIR/Gemini
 – CoAxe
 – FairDiesel
 • Loop scavenge
 – Delta Hawk (sorry Dennis)
 • Uniflow
 – WAM works pretty well, but power increase problematic
 – Raptor

• Barrel engines, cam engines, any non-slider crank
Why Haven’t Diesels Taken Over?

- Weight, but that’s improving quickly
- Other technology that was time appropriate
 - Spark ignition engines in WW2
 - Gas turbines post war
- Market success of SI in General Aviation
 - SI was good enough
- Development costs are very high for any new engine, more so for diesels
- Interesting competition-Two pairs of similar designs
 - Air cooled 4 – France vs. US-China
 - Liquid cooled auto conversions – Germany vs. Austria
Discussion